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A bstract

This PAper considers the decision-m aking problen Of selecting a strategy from a set of al-
ternatives on the basis of incomplete information (c.g., afinite number of observations). At any
time the system it adopt a particular st rategy or decide t o gather addit ional informat ion at
sor ne cost. Balancing the expected wiility of the new information against the cost of acquiring
the information is the cent ral problem we address.

I our apyproachy, the cost and utility of applying a particular strat cgy to a given problem are
represented as randomn variables fromn a parametric dista ibution. By observing t he performance
of cachstrategy (1 arandomly selected sample Of problems, we canuse paramnet er estin lilt ion
t cchimiques t oinfer statistical models of performance on the general population of problerns.
These naodels carn then be used to estimate: (1)t he utility and cost of acquiring addit ional
information; and (2) the desirability of select ing a particular st rat cgy from a set. of choices.
Fmpirical results are presented that demonst rat ¢ the effectivencss of the hypot hesis evaluat ion

techniqgues for tuning system parametersina NASA antenna scheduling application.
Keywords

machine learning, the utility probleny, planming and scheduling, paramceter estimation, adap

tive problem-solving

1. INTRODUCTION

Inmachine learninig and basic decision-inaking in- Al, a systemn noust reason about al-
ternative cowrses of actionin the absence of perfect in format ion; frequently, the expected
utility o { the in formation to be acquired must bebalancedagainst the cost of acquiring the
i formation. When one wishies sone sort of statistical guarantees onthe (Jo cal) optimality
of the choice and/or the guarantee of rationality, a statistical decision theoretic framework
i s usclul. This problem of decisioni-making with incomplete information and in formation
costs can be analyzed in two parts:

. How much in formation is enough? At what point do we have adequate information to

sclect one of the alternatives?

. 11 one wishes 1o acquire more information, which information will allow us to make

the best possible decision at, hanid while minhinizing, information costs?

Possible solutions to this decision-1 naking quandary depernid on the context in which
the dacision is being made. This paper focuses on an abstract. class of decision p roblems

(“ill led hypo thesis selection problemsthatariscinmany contextsinmachinelearning. <1111(%(
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HYPOTHESISEVALUATIONIN MACHINE LIARNING 3

problems arise when one must select the best hypothesis (such a's hypothesized concept
description, or a hypothesized yiolyt ¢111-soil’il]p, » heuristic) from a set, given its performance
over some training data. For exa n 101, inadaptive problem solving @ learning algorithm
must sclect, from a sct. of possible control strategies, o11¢ thatimost enhances pronici
solving performance [1], [2]. Ininductive lea rning there are two issues which are naturally
seen as hypothesis selection problems: the attribhut e selection problem consists of selecting
onc of aset of attributes based oninformation gain [3], [4]; and the model selection problem
consists of selecting one of a set. of learned models (€.9. pruned dccision trees) based on
their classification accuracy [5]. Although hypothesis selection problems occur in mar iy
contexts, in this article we will use the terminol ogy appropriate for adaptive problem-
solving - so that acquiring additional inforination corresponds to solving probler ns with
a particular problem solving strategy and sclecting a problem-solving strategy with high
expectedutility is the goal.

Solving hypothesis sclection problems may involve significant investment of resourc s,
Ther ¢ may be monetary cost in obtaining training data and computationa cost inpro-
cessing, it. Usually this cost is addressed by informal or intuitive judgement  rather than
a rational analysis of the costs and benefits involved. This Paler introduces two general
methods for solving hypothesis selection algorithms efliciently and cach method can be
auginented with rational analysis to minimize the total cost of sclecting a hypothesis. The
first. method, called interval- based sclection, involves quantifying the wncertainty in com-
peting hiypotheses by using the statistical] confidence that one hypothesis is better than
anotler hypothesis. In this approach the system allocates ex amples to show that one hy -
pothesis dominates all the other hypotheses with t he specified confidence. These methods
also rely upon an indiflerence paramcter if’” two hypotheses difler in performmance y less
than this amount, cither is acceptable. !

‘1’1 e second mmethod uses the decision theoretic concept. of eapected loss [7], [8], which
nacasures the probability of making a less preferable decision weighted by the lost utility
with resprec t Lo the alternative choice. Inthe exp ected 10SS approach, the systemac-
quires in forimat ion until the expected 10ss is reduced Helow some specified threshold. This

0o . . . [ . .
MPhis formalism is analogous 1o the PAC [6] framework  “probably” “abPr oximately” “corr eet” maps ont o

LYY

“probably” “close to” “highest expected utility™.

Oc tober 6, 1994 DRAWT




AEEE TRANSACTIONS ON PATTERNANALYSIS ANI) MACHINE INTELLIGENCE, VOL. XX, NO. Y, MONTH 1999

approach has the added ben ofit. of not attempting to distingui sh among two h yp ot heses
with similar means and 1ow variances (C.g., it recognizes indiflerenice without a separate
indiflerence par ameter).

Forboththe interval-based and expected loss approaches, when comparing among more
than two alternatives, one is comparing thie utility of the “best” hypothesis 1o the other
possible hypotheses. Since there are multiple comparisons, the est imate for the overall
error in the final conclusion (selection of” a best hypothesis) i's based upon the crrors
associated with multiple smaller conclusions. In 1ot h t he interval-based and expected
loss approaches, it is possible to improve performance by rationally allocating varying
amounts of crror to cacli of the sinaller conclusions. Hen ce, there are fowr algorithims we
consider: interval-hased with equal error allocation , interval-based with unequal (rational)
error allocation, ex pected loss with equal error allocation , and expected 10ss with unequal
(rational) allocation.

Therest of this Paperjsorganized as follows. Scetion ‘2 describes the general hypothesis
cvaluation problem and frames the problem as statistical parameter estimation. Section 3
descriles the confidence interval approach. Section 4 describes the expected 1oss approach
and Scction b describes a1 empirical evaluation of these techniques using synthet ic and

real- world scheduling data. Section 6 sutmmarizes the principal points of” this paper.

{ 1. T HyprorTnesis KEVALUATION IPROBLEM

Hypothesis evaluation is the problem of selecting one of a set of hypotheses which, with
high probability, is close to the lint. We adopt a parametric statistical approach to this
problem. Typically we have a set of problems 1) (planning probleins, exemplars to classify,
cte ). Any particular problem @ is selectedfrom this set with probability 125,(d). We al so
have available a set of k potential alternative strat egies 11y ,.. . H;., for solving problemns.
Iach hypothesized strategy H; has associated wit b it anunknown utility distribution U,
describing its quatity, andanunknown cost distribution C; describing the cost t o process
examples. Both o £ these are are induced by the probability dist ribution over 1.2 The

?Considerable work has been devoted to speedup learning, in which Ui and ¢ often are inversely related. Yor

example, in speedup Iearning one might use U = -C. In other work the utility of a solution might relate to the

guality of the overall plan or schedule produced [9], [10], [11].
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HYPOTHESIS EVALUATION IN MACHHNE LISARNING 5

desired outcome of the hypothesis evaluation problem 1S to sclect. @ hypothesis . which
has the highest (or close to highest) expected utility “{.

Although the distributions U; and  C,are wnik nown, the decision-making system can
infar information about these distributions by observing the behavior of strategy 71, 011
problems drawnfrom . 111115, the systemcan choose betweenacquiring more informnation

acquiring anotlier sam ple from U; with co st drawn from C; o r adopting a hypothesis
strateqy 1; (1he same question as inthe introducti on).

Owr generalapproachto this problem consists of two parts: parameter estimation and
hypothesis evaluation. In parameter estimation the underlying distributions of expected
utility and exprect ed cost are assumed to ber of a particular form (e. g., norrnal, student 1,
cte.) reducing the problem to onc: of estimating parameters such as mean and variance
from behavior 011 sample problems. I hypothesis evaluation, decision ru les to decide
how much information is enough, and how to acquire information are formulated based
upon estimated parameters. A's the result of applying these decision rules, the system
may decide to gather additional information (sar nples), in which case it faces the decision
between acquiring information and stopping again. This process continues until the system
determines it has acquired cnough information.

IFor purposes of estimating the expected value of these distributions we assume that U;
and C are jointly nor1nally distributed (sometimes called gaussian) ranclom variables with
unknown 111( 2111 andunknown general covariance. The assumption of normality IS quite
reasonable as the estimated exp ccted value of anarbitrary distribution is approximately
normally distributed (@ consequence of the Central Limit. Thicorem [137). Confidence
intervals regarding the truemeancan 10 computed fromthe sample mean, sample variance,
andinnner of samples. More concretely, one can show that the difference hetween the
observed sample mear and true nacary is normally distribut ed with () mecanand ;lll‘in'lt‘s
the varia nce of the initial distribution, c.g. ji - po ~ N(0, "“2) [14].

Given the assumption of normalily we can also coniclude that the differential distribu-
tion (the distribution of the differcrice in utility between any two strategies) 1S normally
distributed. This property is important in that it allows us to determine that one strat-

FAlternative castings of the problem might also imp ose requircinents on the variance of the selected distribution

(cpn [12)).
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egy is better than (or roughly cquivalent to) another strategy in expected utility by only
maintaining information about the differential distributions. This simplifies some of the
nathematics. For exar nple, inmany applications the performance of” diflerent strategics
may be highly correlated (€. @., when strateg ies are simallmodifications of' sonie common
ancestor). Using the diflerential distributions ¢ ncodes this correlational information with-

out. the need for explicitly computing covariance estimates.

A. Other Approaches

Our approachito hypothesis evaluation is relatedto several othermethodsin the machine
learning and statistics literature. Standard machine learning approaches do not provide
bounds on the quality of the selected hypothesis, and thus do not fit into our conceprtion of
hypothesis evaluation. However, hypothesi s evaluation proper has been studied extensively
in computational learning theory. The thrust of that community has focused on the
question of whether hypothesis selection 1S possible in the worst possible circumstances
(and thus avoids parametric approaches); however, we arc concernedwith algorithms that
are highly cflicient in practice. The closest. approaches to ours from the computational
learning theory community are [2], [17].

In th ¢ statistics literature, hypothesis evaluation problems are refered to as ranking and
sclection problems [18], In their terminology we are studying, sequential elimination selec-
tion procedures [19]. Owr work differs {from this literature in that our approach is more
general. Standard sclection techniques make restrictive assumptions about the variances
of the utility distributions. We allow the utility distributions to b correlated and have
unequal (finite) variances. However, we give up the strong correctness proofs provided by
these statistical techimiques. Our techniques are hearistic and we provide only mathemat-
ically plausible and cmpirical argur nents for their correctness.  ‘1'11( approachclosestio
oursin generality is @ machine learning technigue proposed hy Moore and Lee [5].

Our approach extends hoth learning theory and st atistical approaches in that we account
for the cost of obtaining data. T'ypically hiypothesis selection approaches only attempt to
minimize the overall nunber of exarnples. We extend these app roaches to account for

Phis technique is known as blocking in the statistical literatuie, see p. 299-300 of [18]), and the method of

common vandor variables in the simulation literature [16)].
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situati ons where the cost of evaluating different ypotheses substantially differs.

13, Notalion

Throughout this paper we use the following notation:

. U;iS the utility distribution for the hypothesis strategy 1,
C, is the cost distribution for the hypot hesis strat egy 7,

. ft; 1S thetrue mean for the variable U,

. U; 1S the sample mican for the variable U,

. o0, is the t1ue stanidard deviation {for the variable U,

.S, is the sanple st andard deviation for U,

. (/,is the sample mean for the variable ¢,

. Uy, is the variable for the distribution computed by taking the utility of J/;minusthe utility of 1/
both solving the same problem. Note that this distr ibution is Gaussian (normal) if U; and U are
jointly gaussian even if U; and Uj are  not independent g;- ,, Uy, 04, and S, are analogously
defined.

We also define functions to allow computation of probabilities of nornally distributed

variables. The probability that arauidom variable y has a value in the interval (a.h) given
that the variable is nor nally distributed with micim poand standard deviation o is

1 b v
Pa,b;p1,0)= '\/?ﬂ / PRIk dy
o/a

For the standard normal distribution with mcan ji= () and standard deviation o= 1, w (1
use the specialized notation:

b
Dla, b) = - J) / e ‘r’yz(/g/
2m

¢
Voa

111, THE INTERVAL-BASED APPROACH

I 'he confidence interval-based approach depends on a confidence parameter + and an
indiflerence parameter ¢, This approach attempts 0 show that with confidence 5 there
is a hypothesis strategy 11 such that {for every otlier hypothesis strategy 17, cither: a)
LU; 5] >001 b) Ui ]| < ¢ Intaitively, if suchanil;canbefoundit sitoinia headopted
hecause for every oth er hypothesis strategy 175, with confidence v, cither 17; isbhotter than
11; (dominance) or 11; and 115 are close enough so t hat w ¢ do not cire (indifference). This
intuitive description will bo» further elaboratedin the following paragraphs.

Consider two of the hypothesis strategies being evaluated 11, and 17;. Under the assu np-
tion that Ui and U; ave jointly nort nally distributed, the difference U, 5 is normally dis-

tributed. Henee, analyzing the diflerence Uy, and computing the confidence that g, ;>0
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Dominance Indiflerence

l)l"(“(/) I (“/_1)

ouv,;, U R (S |

Fig. 1. Dominance and Indiflerence Calculations

gives the confidence that 11; dominates 1;. +30 represent the confidence in this pairwise

comparison of U; and U; we use the variable 47,

To compute the conifidence that /4 ; > 0 we adapt amethodfor computing confidence
intervals for the meanof a normal distribution withunk nown variance from [14]. However,
our application diflers fromthe standard confidence interval calculation as follows. In the
st andard problem, once is given a confidence level 47, and the task isto compute ariinterval
such that the true mean lies inthe interval with confidence v*. I our case, we arc given the
mmterval, and we wish to compute the confidence that the mean lies within tl e interval.
Thus, since 1 - U ~ N(0. ﬂ?,) for this difference distribution, and the confidence that
0 - U is insome interval is simply the integral of t lie nort nal curve for that interval, these
assumptions result in the following formula (shiown graphically in Figure 1 ):

4 s @0, 005 Ui, i"i]’) s (- Uy Js\/”] )
To handle the case of indiflerence pruning, the confidence that - ¢ <y ; < ¢ can be
computed similarly to the method described above yielding the following formula (shown
graphically in Iigure 1):

2
AR
T

'
" s

Yo (])(» (:(;-l/i;j)

»(U,; i (7)\/71“(»1/,-, 5OV

S S

)
This can hor interpreted using the con fidence interval stopping criterion as follows. T the
first. case v* indicates our confidence in the hypothesis that the mean of the distribution
Ui is greater than themean or the distribution Uy, thus we prefer i ov er 11, (dominance).
In the second case the diflerence hetween the micans of U; and U; 1S 1 w s than ¢ with
confidence *, thus Hi and 1, are not worth distinguishing (indiflerc mee). 1 U, < (O , then
1 jappearsto be superior to 1; s we s1)0111(1 1)¢ focusing on /1 andnot 11;.

One complication is that in a general hypothesis evaluation problem, one is selecting

from & > 2 hypotheses. Thus, for the interval- based approacl ics, one IS comparing once
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hyypoothesis 1., (believed to be the best) against the other & - 1 hypotheses. Thus the
confidence v of the over all decision depends upon the confidences v* in the individual £ - 1
comparisons. f" we presune a pessimistic accumulation of error, we might project that
the (17 0l'swouldadd  requiring that thesuin of” thek - 1 crrors add to less than y.
["h” (" lily distributing the arror indicates that the individual confidences must be: 7 -

1 1 T (confidence equation 1) . Unfortunately, in the worst case, for I strategics, the
choice of the final sclection may depend upon more than & - 1 pairwise comparisons.
Consider the case where the focus strategy 11,;,, changes frequently while attempting to
find a best strategy. Indeed, in the worst case, the final sclect ion would depend upon al
of the pairwise combinations of sclections of two of the & strategies (due to shifting of
the focus hypothesis strategy).  This is simply & choose 2 or k(k - 1)/2. Thus, in the
worst, case, forthe equal distribhution of errors poremise, the individual confidences must

L 1 ?(] )

Wk 1) (confidence equation 2).

bhe: ~

However, typically one samples evenly fromall of” t he distributions ng sammples before one
('1100s(’s afocusstrategy. 1 g is large enough si1e1 thatt hefocus st rategy M, changes
rarcly, the overall confidence will more closely reseble the linear relationshiys deserilhed
in confidence equation 1, Indeed, if the errors tend to cancel each other, even this lincar
smmmation of errors Will be an overestimate of the actual error®.

1 lowever, equal error allocation does not take advantage of the fact thr at reducing the
error in some of the terms may be casier than in others. Pertaining to this issue we first
outline an algorithm called STOPTwhich distributes the error evenly, then show a variation
011 this basic algorithim STOP2 which accounts for the varying di fliculty in reducing the
crror in cach of the terms and  akes into account the varying cost of sampling from cach

of the distributions.

A . The STOP1 Algorithmn

The STOPT algorithi car be described as follows.  Let *17 he the set of hypothesis
strategies Iy, ..., . Sample from cach of the utility distributions Uy, . . . . Upsomedefault
mnnberof samplessg. 1 o.et 11, be the strategy in 1" which has the highest sample mearn
for Ui so far (111 (:1{a¢1 called the focus strategy Hyign) - Yoy cachstrategy 1, in 1, if

‘ror 41111111,1 discussionofl thisissuesee[20]p.18-19
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Us s in the interval - ¢, ¢, altampt to show indiflerence. H not, attempt to show that 7,
2 ) ) 7
dominates /.

Indifleren ce is shown as follows. Compute the confid ence that the truen can gy of Uj_

*

lies within the interval - ¢, . I this con fidence is greater than v then indiflerence has

been shown. Ilse, sample from Uy and U; as necessa ry until cither: (J) the conficlence that
fti- is within the interval - ¢, ¢ is greater than ~* or (2) AUJ; ; gocs above ¢ or helow - ¢
H 'U‘,-, i goes above ¢, Uy now has a higher sample mean than U; by a significant. amount
so that we should make 17; the target hypothesis and proceed. 1f U; ; < - ¢, H; looks
significantly worse than 77; so that we should attempt to show that 77; dominates 17;.
Dominance is shown similarly. Compute the confid ence that -y, ; >0. 1 this confidenice
is greater than 4" we have shown dominance; otherwise sample from U; and U as necessary
until cither the con fidence hecomes greater thany® or U;.; goes below ¢ 1nthis case, we

might attempt to show indiflerence among, 11; and 11;.

It is worth noting that sometimes when Uj,i is in the interval - ¢, ¢ , there is more
confidence in the claim that 1/; dominates /1; than in the caim that 11; and 11; are
indifferent. 1 is unclear whether a closed form exists that can he used to determine whether
dominance or indiflerence has higher confidence. We avoid this problem by computing hoth
the dominance and indiflerence and using the higher of the two confidences.

STOPL ALGORTTIHM:
Tet. 'V My, oo 1
let v = 1--(1- ~4)/(k- 1)
solve g problems with cach strategy in T and compute U statistics
Yet Hyrign be the strategy in 1 with the highest U
LOOP
let 1yzig0 be the strategy in 1" with the highest
sample mean for Uyig,
if for every 115 in ‘1" one of the following holds
Hyign dominates J; with confidence 7
505 and I ave ambivalent with confidence 5°
then return Hypign
clse sclect a strategy 115 such that neither
Uigr dominates U; with confidence ~?
nor Upign and Uj are ambivalent with confidence »°
generate data for the distribution Upign.
recompute U statistics

CONTINUL WITIH 1.LOOP1
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Note that the algorithm has been simplified for purposes of clarity. A realistic mmplemen-

tation would temporarily classify the strategies into indiflerence and dominance classe

when confidence has heen shown. When Hyign changes, these strategies must be returned

to e unknown oo Hecause they must e compared 1o the new 501

3. The STOP2 Algorithmn

The STOP2 algorithm differs from the STOP] algorithm in that t accomnts for two

factors ignored in the STOP1 approach. I'irst, depending upon the sample variances and

ample means of the individual U,. distributions, examples allocated to the distributions

will have different. effects on improving the confidence in a pairwise dominance or indif-

ference relation. Second, the cost of acquiring information (examples) ay Vary across

hypotheses. 3ecause of these varying benefits and costs sometinies sighificant. benefits can

e derived from not hounding the statistical error cqually across each of the Hairwise com-

ms. The STOPT algorithm, which does not account, for these varving benefits and

costs, uses cqual Hounds across the Hairwise companisons. The STOP2 algor thin estimates

the likely cost and benefit for cach new e xample and allocates examples (o the comparison

with the highest estimated benefit. divided by cost. This can result in a situation where

cach comparison 18 estitnated to a different level of statistical crror, although the sumn of

these errors still must remain below {hoe overall hbound of 1 -

- As the individual pairwise
confidences may vary, we introduce the new notation 7 to signify the confidence that
strategy /1; dominates or is indiflerent, with strategy 17;.

For example, as shown in Figure 2, if the uncertainty in determining the dominance of
1I; over 11, has alrcady heen reduced significantly, and the uncertaity in showing the
dominance of 11; over 1] has not, additional examples to 11, vs. 1. arc likely to have
greater eflect on reducing the overall error than examples from 11; vs. Hi. 'Thus one can
, the reduction in statistical

estimate the marginal benefit of allocating additional sample
crror resulting from an additional example, by assuning that the mean and variance of
U;. i will change little and computing the increase in certainty. This results in the following
formula.

Ay dor Uy = @(- Uy - co0) - old

(marginal confidence dominance cquation)

Similarly, we estimate the iarginal increase in indifference confidence from acquiring an

October 6, 1994 DRAYWT



I21EEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. Y, MONT'1]1 1999

Vig. 2. Varying Fflects of Sampling

additional example of” Uj - ;asfollows:

N (U, - -
Ay Tor Uy = (]( o \/Il | l i |$f,)\/’l i1 )_01(1 ’7;,

The second factor considered by STOPP2 and not by STOP1 is the varying cost o f
acquiring a sarnple. If acquiring an additional sample has any extremely high cost, it mnay
not. he worth the eflort, even if the expected information gain is large. Likewise, a low
information cost may make a lesser information gain look more attractive. To decide how
1)Hest to allocate learning resources, STOP2 estimates marginal cost. This is the cost of
acquiring another sample for a given pairwise comparison and it consists of the cost o f
determining a utility value for caclnnember of the pair. As cacli comparison shares the
same hypothesis Hypig,, at least part of this cost may already have heen incurred. Thus
estimating the marginal cost involves two parts. First, determine which utility values
nst 3¢ determined (U;, U, 017 both). Second, use the estimated mean s for C;and Cjto
estiimate the cost. of acquiring another sample U; and Usi as appropriate.

The estimated marginal cost of determining another point from U;.; 1S computed as
follows. Let Nei indicate the number of samples drawn from the strategy 77; S() far. When
we draw a problem from the distribution, we store it so that if we wish to sample p t imes
from the distribution U;, and p times from dist ribut ion Uy, we have the same p problems
from the problem distribution. Ifurthermore, when we compute diflerences in utility from
the distribution U;. ; these are computed by using, the competing strategies on the same
problent. Thus if we wish to get the pth sample from { no distribution U. , (assuming,
pJs2u11apies have already heen cornputed), Noi and N, must cach e atleast p-1 . *J]](
cost. can bhe exprressed as follows:

. U hoth N, and Nea S are PO greater: the cost of ¢ ornpruting the pth sample is 0.

c W NGz p - 1 and Noj= p then the expected cost is .
W N, = p 1t and Ny, = pthenthe expected cost is _(,']
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NG 13

o« I Nyj = p- 1and Noi = p= 1 then the expected cost is () C;

Given the inarginal benefit and marginal cost, STOP2 uses

the commmon greedy approach
of sclecting the course of action which has the highest ratio of marginal return to marginal

cost. This process continues until a strategy emerges which can be shown with overall
6

confidence v to be dominant or indifferent with respect. to all other strategies

STOP2 A JGORITHS
_2, W\AN \\:...,N\»

solve ng problemns with cach strategy in

compute utility comparison statistics for ng sample
1.OOP1]
let. 1 ypigh be the strategy in T with the highest sample niean U
i for every 1 in I one of the following conditions holds
Uyigrn dominates Uy with confidence «°
Upign and Uy are ambivalent with confidence 47
such that 3 4" <«

then return Hypign

clse for cach strategy H; in'l

Compute the marginal benefit M I3y anud marginal cost MO

of acquiring another samnple from Upigh- s
for the 11; with the highest M /MO

generate data for the distribution Uyign-

recompute utility comparison statistics, reselecting
Hiyrign if necessary

CONTINUI WITH LOOP1

Again, the algorithm has been simplified 1o case understanding. In fact, he marginal cost

and utility of acquiring another samnple need only be updated when relevant sainples are

taken.  Additionally, acquiring a sample for 1y, to acquire a sample for Uygn.  may
allow another Upign- 5 1o e computed at zero cost (due to changes in 11,,,) and hence

should be included in e relevant margina benefit. caleulation.

“Note that in general, the systen will be attanpling Lo show that a specific strategy J7; dominates or is ambivalent
with all the others. This means that No; will be consistently > to all other Noj. Anylime N,; incremented to
find out morce information regarding 71;, this immediately reduces the cost of acquiring information for othey 11;’s,
of diflerent means

as they no longer need Lo pay the cost of sampling, 71, This will tend to mitigate the effect

and variances for U;. 5 distributions. However, in cases where the focus strategy H, changes, other more complex

phenomena will occur.
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IV, 1k Experereb 1.0ss A1 ROACH

A commonly used measure in valuing information in game thcory applications is the
Collect) of expected loss. 17111 simply, expracied 10ss is the chance that onemakes the
wrong decision, weighited by how wrong the decision turns out to 1. Theexpocted 10ss
measurce can be computed for any pair of alternatives. These (0111 1)111((1 values canthenbe
used to answer hoth the question of “is the currentinformation en oughi” and if additional
information is needed “which information at. which cost should we get” . *1'11(' former
question can bhe answered by putting a b ound 011 the expected 10ss that one is willing to
tolerate, and making a decision when an alternat ive is found to have an expected 10ss of
less than the hound. In our case of hypothesis evaluation, one car select a hypothesis
strategy 11 when: Y20 1 [1 (11, 115)] < 1 " More rigorously, we define the exp ected loss of
utility fro]]] adopting 71 vather than 775 to be t he int egral of {he joint utility of J7; and
11; over the regions where 115 has Jower utility weighted 1oy the difference in utility:

IAIEVIINIDIE / /J’U,u, (i) (g - ) dug du;
Juy <

However, because U; and U; are jointly gaussian, and a lincar combination of two jointly

gaussian random variables is gaussian, we can use the differential distribution U, ; to

compute the expected loss directly.

Thus w(r simply estimate the mean and variance for our best guess at the true mean of

the differential distribution U, ;. ®

We compute theintegral over theregionwhere U, ; >0 of the termw -1 (Up ;= w). To
do this, we first. cor npute the sample mean and variance for the diflerential distribution,
and then apply a forr nula analogous to that used in the dominance confider ice int erval

calculation (for derivation, see Appendix A).

KL 1) = 7 B R / R P
[ ( 1 J)] \/Zﬂ'u \/27( ) _u: e

)

A . The i1 Algorithm

Given this definition of expected 10ss, we can define the analogs of 1011 and S1'01'2,
called ELT and El.2.

LT ALG ORI'THM:
let'/’ =1y, .... Hjand 1. betheexpected 10ss 1111( eshold
let 1.4 = 1/k

“Enforcing that ¥(1,(11,11))= 0.

®Analternative app roach would be to estimate the parameters for cacli of the individual utility distril utions, then
use these para meters to compute the mean and variances for the estimates of the differential distributions. This
would result in the same parameters as our approach of camputing the parameters of the differen tial distributions

directly from the data.
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solve g problems with cach strategy in '1'
let Hypign be the strategy in *17 with th e highest sample v
Vi:=1,. ., kcompute I5(1.(Hpign, Hj))
1.OOP!
sclectastrategy I, such t hatthe
expectedutility 10ss fromselecting,
Hitign gyey i is great erthan 1.
il there is no such strategy,
then veturn 1y gn
else gon(-mt(-Séml})](' from1/; and 1111, <,1,
recompute expected utilit y losses

CONTINULE 1,0011

3. The 112 A lgorvithm

1912 ext ends LT in exactly thesame way that §71°01° 2 ext ends STOPT, by accounting,

for variable gains and costs across the hypotheses.

The marginal decrease i capected utidity loss (MDIUL) is computed by recomputing
the integral for expected loss, assuming that the variances and means will remain the same
but incrementing n by 1 and subtracting the carrent expected utility loss. The resulting
formula is shown below

v, .
BRI E
‘(Si- ))

Sl:l'~ “j(
AR[LUL H)) = - M
\/?7((7: -41)
. o
[ 2
J - 0.52
- - _ 1z - d B[1L(1;, 1 2
l V2n ‘/u‘.» j‘/“’“ « dz old B[L(1; ])} (2)
Si

1 . . : H . 9 1! ‘ 4T Y : H
The expected marginal cost of sampling is computed asin STOL 2. The 1612 algorithm is
shown Helow.

L2 ALGORITHM
lett' =1y, . ... Hiand L be the expectedloss till’eslI[)1d
solve 1 problems with each strategy in ‘I’
let 1 jpign be the strategy in 1" with the highest sample nican U
Vi: 1,... k compute F{L(1 g0, 1))
and let this be I (enforee that F(L(1;, H)) = 0
loopl
iy <L
then return Hygign
clse compute the marginal decrease in expected
loss (MDIUL) by sampling from each of the
s (including, Hyrign)

compute the marginal cost of sanpling cach
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strategy using the C distributions

sample from the distribution with the highest
MDYUL/expected marginal sampling cost
recompute L]’s as necessary

continue loopl

V. EMPIRICAL PERFORMANCE JIVALUATION

We now turn to a1 a npirical avaluation of the hypothesis sclection techniques. This
evaluation 1( nds support to the techniques by addressing three key issues. Iirst it demnor -
stra tes that the tedimiques perform as predicted.  Sccorid, the evaluation demonstrates
the benefits of rational example gllocation (asperformed by S'7701'2 and 11.2). Finally, it
illustrates the applicability of the approach to a real-world hypothesis sclection problem.
Where possible, we contrast performance with t hat of other relevant apyroaches in the

statistical literature.

A . Other Relevant Approach es

‘1 'hCre exists a body of standard approaches for the interval-hased formulation of the
niypothesisevaluationproblem. To demonstrate tlie power of our interval-based approaches
we contrast them with two existing approachies. “J'hefirst isa statistical approach Prohosed
by Turnbull and Weiss [21]. "1 'he sccond is the COMPOSER nachine learning technigue
DT ODOSC (1 by Gratchand DeJong [1].

The Turnbull and Weiss approach comes closest among statistical rankingand sclection
p rocedures to the generality of the STOP1 and STOP2 apporoaches. Most standard sta-
tistical approaches make strong assumptions about the form of the hypothesis evaluation
problem (e.g., the variar jces associated with hypotheses arc known or cqual). A's in our
interval-hased approachies, Turnbulland Weiss t reat hypotheses as nornnal variables with
unknown mean, and unknown and unegual varian ce, however they make the additional
assumption that hypotl ieses are independent. 1 can still be reasonable to use this ap-
proach when the hypotheses are not independent, but this cown lead to excessive statistical
error or unnecessarily large training set Sires un der certain circamstances. However, in the

cascwhere 1 aypotheses are truly independent, this techmique can exploit this knowledge
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and likely outper form our naethods which d o not adopt this assumption. The Turnbull
technique is described in Appendix B.

The COMPOSER technique (described in Appendix C) was proposed 1o solve hypothesis
evaluation problemns as they arise inthe context of adaptive problem solving. COMDPPOSER
treats hypotheses as dependent nortnal variables with unknownimean , andunk nown stid
uncqual variance. C OMPOSEIR, however, dots not implement the notion of anindifference
interval. Raather it 1S trying to adopt the first hypothesis that ca n be demonstrated to be
significanitly bot ter than a default. hypothesis. When the best hypotheses are all close to

cach other inutility, CO MPOSER will require an excessive number of training examples.

3. Mcthodology

First we discuss some methodological issues. The interval-based and exp ected 10ss ap-
proaches embody di flerent criteria for selecting hypotheses and therefore are di flicult to
compare directly. Thus we first test the interval- hased and expect ed 10Ss approaches sepr-
arately. Interval-ased apporoaches have 1 een invest igated extensively in the st atistical
ranking and sclection literature (sce [22] for a review of the recent literature). This af-
fords us the opport unity to compare STOPTand S1'01° 2 against a st and ard statistical
aphroach.

1 echniques are evaluated on synthetic and real-world data sets. Synthetic data allows
a systematic test of the formal properties of cach technique while real data sets test, tlie
appropriateness of” statisticalassumptions  such as t he normal approximation and assess
the practicality of cach approach on real-world problenis. Finally, in a comprehensive real-
world test o scheduling data, we ¢ omp are theinterval based and expect ed ]0sS approaches,
using a wide range of pararneter settings. This test reports on the bottom-line eflectivencess
of the competing techniques in @ pragm atic problem-solving setting.

An experimental trial consists of solving a hypothesis evaluation p roblem with a given
technigue. The performance o011 any single trial provides little information given the ran-
doni nature of the task. To assess the average characteristics of the technique a trial is
repeated multiple times and the resul ts are averaged across trials. All experimental trials
arcrepeated 50007 times.

At interval-hased technique Hrocesses exar nples until it has identified a h ypothesis that

(((0L)($2 6, 1904 DRAFY
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with probability v* is withiin ¢ of opti mal. STOP1 attemmpts to ensure this Property with
the minimum number of training examples possible. §71701°2 attempts to ensure this
property with the minimum cost possible. To assess t he compet ence of” these technigues
w (I track three quantitics: the number of examples required to choose a hypothesis, the
cost of the examples required to ¢hoose a hypot hesis, and the observed probability that
the expected utility of the chosen hypothesis is infact within ¢ of the utility of the optimal
hypothesis. FFor the expected 1oss techmiques we track the analogous three quantities: the
nuber of” examples to ¢ hoose ahiypothesis, the cost of the examples, and the average loss
(the average loss in utility when the technique chooses the nonoptimal hypothesis weighted

by the probability of choosing the nonoptimal hypothesis).

13.1 Synthetic Data

Syntlictic data is used to show that: (1) the techniques perform as exp ected whenthe
underlying assumptions are valid and (2) the use of rational example allocation exh ibits
substantial improvemeitt when there is unequal cost or variance among, the distributions.
I'or interval based apPt paches we show that the technique will chioose the 1hest iypotheses,
or one c-close to the best, with the requested probability. When all hypotheses arc withiin
¢ of cachiother, the indiffere nee-based technique should quickly terminate, returning airy
hypothieses. For the expected 10ss approaches the claim is that the technique will exhibit
no 1mor¢ thattherequestedlevel of” expected loss. One set of evaluations is devised to test
this claim.

T'he second claim is that the techniques that use rational example allocation will exhibit
subst ant 1al perforr nance improvement whien there is unequal cost or variance arnong the
hypotheses. A second set of evaluations is devised to test this claim

IFor the synthetic data problems, hypotheses are nodeled as random varialbles with pa-
ramicterized properties. A specific hypothesis evaluation problem is constructed Iy fixing
the values of cach of” these parameters. T the course of solving a specific problein, val-
ues for the wtility and cost of cach hypothesis 011 cacl)exa n1ple are assigned ranidornly
according 1o the parar neterized distribution functions.  Fora given poroblem let k define
the 11111111)( "1 of hypotheses. For all synthetic evaluations, the hypothesis utilities and costs

are treated as independent normal raridor n variables with so me parameterized incan and
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variance. Bach hypothesis is described by four parameters - exp ected utility, utility vari-
ance, expected cost, and cost variance. Thus a hypothesi s evaluation problem is specified
by 4k paramnct crs.

The hypothesis evaluation techniques have additional parameters that govern how they
attackthe 1)1'02)1( 111 “-1"() distinguish these we refer to problem parameters and control pa-
rameters. The interval-based tecimiques have tlhee control parameters: ar initial samnple
size ng, a confidence setting * and an indifference setting ¢, T'he expected 10ss technigues
have two control parameters: an initial sainple size ng and a loss threshold 11#,

Unless otherwise stated, cach training example on any hypothesis is given equal (ret,.
This means that the overall cost. of a technique is directly proportional to the expected
numbaor ot exa mples required to select a hypothesis. Thus, when cach training example
IS given equal cost only the number of examples will be reported. One set of synthetic
evaluations highlights the henefits of rational example allocation. In these evaluations we

create a sipnificant discrepancy in the cost of evaluating alternative hypothieses.

13.2 Scheduling Data

The test of real-world app licability 1S based on dat a drawn from anactual NASA schedul-
ing, application [23]. This data provides a strong, test of the applicability of the technigues.
All of the statistical techmiques make some form of normal ity assumption. However the
data in this application is highly non-normal - in fact most of the distributi ons are bhim odal.
This characteristic provides a rather severe test of the robustness of the approaches.

In this application a heuristic system was developed to sclhiedule communication events
between carth-orbiting satellites and ground based radio antennas. Inthe ¢o11rs¢ of de-
velopment, extensive evaluations were performed with various scheduling hearistics. The
goal of these evaluations was 1o chioose a heuristic scarch strategy that solved scheduling,
problems quickly o011 average. This is casily scen @s a hypothesi s ¢valuation problem. ach
of* the heuristics ¢ orresponds to a hypothesis. The cost of evaluating a hypothesis over a
training example is the cost of soil’illg the scheduling problem with the given heuristic.
The utility of the training example is simply the negation of its (est. In that way, choosing
a hypothesis with maximal expected utility correspo nds to choosing a scheduling heuristic

with minimal average cost.
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Using, the data from the heuristic evaluations we derived four data sets. 1sach data set
corresponds to a comparison of so1 ne set of scheduling heuristics, and contains data o1 the
heuristics” performance over about one thousand scheduling problems. An experimental
trial consists of executing a techmique over one of these data sets. Iach time a training
¢ xample is to be processed; sor ne problem is dr awn randomly from the data set with
replacement. The actual utility and cost values associated with this scheduling problem
is thenused. As in the synthetic data, cach experimental trial is repeated 5000 times and

all reported results arc the average of these trials.

C. The Interval-Based Approach

The interval- hased approaches, S1°01'1 and STOP2, are evaluated on bothsynthetic and
scheduling data scts. Synthetic problems were ¢ onstructed to answer the following th ree
questions: 1) do the techniques select e-close hypotheses with the specified probability,
2) do the techniques terminate quickly when al hyypothieses arc ¢ -close, and 3) docs
S’1'01’ 2 outperform STOPIwhenthere is significant cost or variance diflerences between
hypotheses. We also contrast the perforinance of our techniques with COMPOSER and

the techmique of Twrnbulland Weiss.

C.1 Confidence Test

The statistical ranking and sclection literature uses a standard methodo logy for evaluat-
ing the statistical error of hypothesis evaluation techniques. We adopt this methodol ogy
here. Robert Bechhofer introduced the concept of the least favorable configuration of the
population means [18]. This 18 a parameter configuration that s most likely to cause a
technique to choose a wrong hypothesis (one th at 1S not ¢-close) and thus provides the
most severe test of the technique’s abilities. Under this configuration, k - 1 of the hypothe-
ses have identical exp ected ntilities, 7, and the remaining hypothesis has expected utility
jt -1 ¢ The last hypothesis has the highest expected utility and should be chosen by the
technique. All hypotheses ave independent and the costs and variances of all hypotheses
are cqual. ¥

The least fav orable configur-ation bo:comes more diflicult (requires more examnples) as the

9 . . . . e :
Note that in this evaluation ¢ acts as a problem parat neter in addition to its role as a control parancter.
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TARBLY

ESTIMATED EXPECTED TOTAL NUMBER OF OBSERVATIONS N FH

LEAST FAVORABLYE CONFIGURATION

ACHIEVED PROBABILITY 01" CORRECT SELECTION IS SITOWN IN PARBENTIHESIS.
kD oo | e STOP1 STOP2 | TURNBULL | COMPOSER
slom| 2] ssoss) | 34083 27 (0.75) 61 (0.96)
3o | 3] 58008 52 (0.78) 50 (0.72) 103 (0.90)
slo9 | 2| 610 oo 54 (0.86) 01 (0.98)

090 | 3] 121 001) | 123 (0.01) 127 (0.87) 170 (0.95)
31095 | 2| 930095 | 96 (0.97) 81 (0.92) | 115 (0.99)
s oos | 3| 1830091 | 103 (0.95) 192 (0.93) 238 (0.97)
5o | 2] s | 94 (0.86) 63 (0.71) | 139 (0.96)
s loms | a| 177 (083) | 179 (0.81) 141 3.3% 250 (0.89)
5o | 2| 150093) | 170 (0.99) 3(0.81) | 195 (0.97)
5 | 0.90 310 (0.92) | 349 (0.93) | 294 (0.88) 389 (0.94)
500 | 2| 212(0.96) | 234 (0.97) 175 (0.91) 237 (0.98)
5l ows | 3] 427095 | 483 (006) | 411 (0.90) 501 (0.97)

10 [0 | 2| 208089 | 330 (0.90) 185 (0.66) | 353 (0.99)
10 [ o7 | 3| ss4087) | oss (0.87) 438 (0.70) 677 (0.89)
10 [ 090 | 2| 430 (0.95) | 508 (0.95) | 331 (0.83) 469 (0.97)
10 | 0.90 3 892 (0. iv‘ 1,066 8.:3 783 (0.89) 058 (0.93)
10|09 | 2| si5en) | 661 (0o | 443 0.01) 574 (0.98)
10 | oon | 3] 1,136 (0.95) | 1,435 (0.97) 037 (0.94) | 1,175 (0.95)

confidence ", the number of 1ypotheses b, or the common wtility variance o? ina

It becomes casier as the indifference interval ¢ mcres

. n the standard methodology a

technique is evaluated using several settings for A, %, and 2 1 1e last term combines the

variance and indifference interval size into a single quantity which as it increases, make

problem more diflicult - For our experimems, o= 7 = 50, 6 64, and all other

parameters are varied as indicated i the wsults and observed

ults. The sample size

confidence levels are summearized in Tablc

The resul s indicate that all systeins are roughly comparable in the number of examples
required to choose a hypotheses. As expected, the number of examples increases with k, v*,
and ¢ The technique of Turnbull and Weiss tended to be the most eflicient, however this
algorithin was cssentially told that e aypothieses are independent; information that was

wi hheld from the other algorithms. COMPOSER performed the worst of the algoritinns.

In terms of statistical error, all of the algorithms except. Turnbull and were correct
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TABLYE n
19 SPIMATED EXPECTED TOTAL NUMBER OF OBSERVATIONS IN T IDIFFER ENCIS C ONFIGURATION,

NoTi 1I3far COMPOSERFAILED ‘00 TERMINATE ON AN} OF TITE TRIALS.

Parameters SToPri STOP2 | 1 URNBULL | COMIPOSIGR
k 3* 5:
31075 2 48 44 27 A
3107 | 3 75 68 50 4
3| 090 | 2 96 100 h4 o
3 (090 3 181 194 127 4
3109 | 9 142 151 81 4
31095 | 3 201 312 Tg2 o
5 | 075 | 2 134 143 63 s
O 0.75 3 249 276 141 A
51 090 | 2 235 267 123 $r
5| 090 | 3 474 568 204 *A4
Dl oon | 2 325 360 174 d4
510o)5 | 3 672 768 411 A
10 | 075 | 2 421 525 185 43
10 0.75 3 833 1104 4138 *ohd
10 | 090 | 2 649 772 331 oh
10 | 090 | 3 1348 1667 782 A
10 0.95 2 83hH 975 444 AAk
10 0.95 3 177 21(10 1037 #Ah

atleast as of 't(’l) asrequested. T he techmique of” T urnbull and Weiss o {ten provided less
than the requested confidence. Towever, since their techmique only guarantees that the

confidence will approach 7* as < tends to zero, these results are consistent with their claim.

C.2 Indifference Toest

The mdifference interval approaches should terminate quickly when all hypotheses are
indifferent to cach other. To test this clainn we repeated the least favorable configuration
evalnations except that all hypotheses were assignied the same expected utility . Results
arc summarized in Table 11, Torror rate results are not shown since any hypothesis is a
correct selection in this configuration.

The key result to notice is that COMIPOSER failed to terminate o1 any of the tri-
als. This highlights the potential difliculties with COMPOSER that S’1701) and STOP2

were designedto Col'r(et,. Again, t he technique of Twrnbull and Weiss could expoloit the
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TABLIV 111

ESTIMATED EXPECTED TOTAL COST FORTIHE I{ ATIONAL Al 1,)(IA'T10ON CONFIGURATION

k| 4 | srort | srore | srom
0.75 12,034 Vfi,‘é'ﬂ 2.3

s | oso | 14800 | 6790 2.2
3 0.85 20,119 ](l,(il{(l 2.0
300,90 | 26,340 | 15,010 1.8
5 | ors | 22081 | naie 1.2
5 0.80 27,375 6,917 3.9
5 logs | 31203 | 9817 3.2
5 0.90 39,3(’]’5 14 859 2.7
0 | 0o | 36768 | 5104 7.1
10 0.80 42,202 6,753 6.3
0 | 085 | 47,167 | 10,086 a7
10 | 0.90 | 56,183 | 15001 3.8

independence information and dlightly outperformsthe 01 her approaches.

(.3 Rational Allocation Test

STOP2 is designed to perform well when the cost. of processing examples or the utility
variance dj flers widely across hypotheses. The preceding evaluations did not contrast
the two approaches under thiese conditions as both the cost and variances were equal.
Consequently STOPTand STOP2 were approximately equally cflicient in these tests.
This evaluation contrasts the approaches hy providing prol yai11 configurations with highly
unecqual costs.

Problem configurations are defined as follows. Onehypothesis (the correct sclection) is
assipn od a high me an fieqr. A sccond hypothesis 1S assigned a mean slightly below ¢ of
the DCSE, jiesi- 1. Al remaining hypotheses are assigned a low nean, iy, . 1he second
hypothesis 1S given a high cost Crign and all other hypotheses ave given low cost ¢, All
hypotheses are assigned a common variance of ift y, jiea = 74, Jpca 1 = 12, flwe st = D,
c =1, and ng = 7. Various confidence settings were evaluated. The results are siunmarized
inlable 111

The results illustrate the clear dominance of STOP2 under this configuration - up to
seven times more eflicient on one of the trials. An interesting question is whether there

is a limit to how much better STOP2 can be. In fact there is an upper boundon this
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TABLE IV
1S STIMATED EXPECTED P()'I'Al> NUMBER OF OBSERVATIONS FOR SCHEDULING 1) ATA. ACHIEVED

PROBABII 'Y OF A CORRECT S LECTION 1S SHOWN IN CARENTHESIS.

st |k ~* ¢ STOPL STOP? TURNBULL COMPOSER
m 3| 095 | 34 008 (1 .00) 648 (1 .00) 26,691 (1 .00) 78 (1 .00)
D2 | 2 | 095 | 34 | ¢ 4 (1.00) 76 (1.00) 13,066 (1 .00) 316 (1.0(0)
1)3 7 0.975.” 14 2,371 (0.94) 2,153 (().93) 94,308 (1 O[1) 2,456 ((1 97)

Da | 7|0 9n 11 | 7,072 (0.96) | 7,621(0.94) | 87,357 (1.00) | 21,312 (0&9)
difference [24]. This upper bound increases as the munber of hypotheses increases or as

the confidence (Wl decrcases.

C.4 Scheduling, Test

We ran all {four algorithing over the four scheduling data sets. In cacli case the v =
95%, ng=1b,andc= 4. (). Table 'V summarizes the results along with the number of
hypotheses and the relative difliculty (7) of cacly data set.

Theprinciple result is that S1'01'1 and S'1°01' 2 substantially exceeded the performance
of’ theother algorithims ¢X¢epl onone case. Theoneexceptionis anartifact. of COMPOSIER
solving a slightly different task. Rather t han choosing the hypothesis that is c-close to
optimal, COMPOSER chooses the fivst hypothesis to dominate a default hiypothesis (the
first hypothiesis was arbitrarily defined to he the default in these trials). In dataset 1)1 the
default is significantly worse than the other two hypotheses, which in turn are indifferent
tocachother. S]] “1 and $101'2takelonger ('(ause they must verify this indifference.

Note that unlike the synthetic data where STOP1T was slightly nore eflicient. than
S101'2, inthescheduling data STOP2 was dlightly more eflicient. In fact, in the schedul-
ing data there 1S some disparity between hypotheses in their utility variance. S7T0P2
i s able 1o account for these factors when allocating examples, and thus exhibits greater
cfliciency.

Turnbull and Weiss” technique performed sul st antially worse on the real-world data.
I ts Poor performance is due to two factors. I'irst, the technique is uniable to quickly dis-
card hypotheses that are clearly dominated by other hypoth eses. Scecond, t he technique’s

independence assumption was inappropriate for this data, which is strongly positively
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correlated. In this situation assuming, mdependences leads 1o overestimates of the true
variance, whicl in turn leads to higher sample sizes

D. Discussion of Interval-Bascd Foaluation

‘Taken together, the evaluation provides clear evidence for the cffectiveness of STOP’1

and STOP2 and demonstrates their superiority 1o alternative technigques. The technigu

performed as predicted, guarantecing the requested confidence level under a variety of con-

figurations. In comparison to other approaches, they did not perform the best on everv
configuration, 1owever when they were outperformed it was not. by much and they often
substantially outperformed 1 1e alternative technigues. For example, COMPOSER fails Lo
terminate when multiple hypotheses are close 1o optimal. The echnique of Turnbull and
Weiss Herformed poorly on the real-world data sets. The schieduling evaluation demon-
strates that STOPT and STOP2’s nornal approximation allows effective performance on
real-world aypotheses selection sroblems, even when the underlying distributions are not
1ormal

The rational allocation test illustrates that STOP2 can substantiallv o erform STOP]
when there are marked differences across heuristics in the cost of proc examples or in
the variance of expected utility values. STOP2 should he used if the hypothesis evaluation
problem aas this characteristic. 1t appears that STOP1T is slightly more eflicient when the

cost and utili Jes are close to equal. Under these circumstances we rec nmmend the use of

SR

Is. The Fapected Approach

The expected loss approaches, BLI and 112, are evaluated on hoth synthetic and

cheduling data sets. Synthetic problems are constructed to answer the following {wo

questions: 1) do the techmiques sroperly hound the expected loss, and 2) does ©1.2 out-

serform BL1 when there is significant cost or variance differences hetw en hypotheses.
15.1 Bxpected Loss Test

The techniques are tested on a least favorable configuratioo with & liypotheses  The

means of k hypothc

arc assigned the value m and the remaining iypothesis s
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TABL.EV
FSTIMATED EXPECTED ‘I'()'I'Al> NUMBER O1' OB SERVATIONS ANI) 1XXPRECTED LOSS OF AN INCORRECT

SELECTION FOR THE 1 EAST FAVORABLIE ¢ ONFIG URATT ON.

Paramcters 151,11 191.2
k| ¢ 11* | Samples | Loss | Samples | Loss
s 2] 10 33| on 2 | 08
32|07 38 | 04 20 | 07
3] 2 0.5 /1(1 0.2 3n 0.5
312|025 58 0.1 48 0.3
502 19 73 04 5|09
512 075 83 0.3 G2 0.7
h| 2 0.5 98 0.2 78 0.5
ho| 2 0.25 127 0.1 114 0.2
10 | 2 1.0 201 0.2 157 0.8
10| 2 | 0.75 221 0.2 182 0.6
1002 05 onh |0 220 | 04
10 | 2| 025 312 0.0 269 0.2

assigned mean m -1 . BBach technique is then tested on various loss thresholds H* over
this problen. For this evaluation, ni = 50, all hypotheses share a conmnon utility variance
0?:64and c - 2. All otlier parameters are varied as indicated in the results. The seunpl e
size results and observed loss values are summarized inTable V. The resutts illustrate
thatthe techniques perform as predicted. As the loss threshold is lowered the technigues

take more training examples to cnsure the expected 10ss remains below the threshold.

1.2 Rational Allocation Test

1512 is designed to perforin well when the cost of processing examples or the utility
variance di flers widely acrosshypotheses. The preceding evaluations (lid not contrast the
t wo technigues as the cost and variances were equal across hypotheses. *1’ 1 is evaluat ion
cont rasts the apporoachies using uncqual costs across thehypotheses.  The configuration
used s identical to the one described in Section C.3. The difference in exprected costs
between solving problems with BLT and ¥1.2 is summarized in Table V] The results
indicate th at K12 subst antially outperformed 191.1 - in one trial solving the configuration
four times more cfliciently. EL2 achieves greater cfliciency as the numnler of hypotheses

increases. As with S71701" 2 we suspect that the potential for greater efliciency is not
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JSSTIMATED BXPECTED 1'()'J'Al, COSTFORTHIERATIONAL AL LOCATION C ONFIGURATION.

k

n*
1.00
0.75
0.50
0.25
1.0)
0.75
0.50
0.25
1.00
0.75
0.50
0.25

TABLI V]
B | 1
D77 | 3,733
6,080 | 3,002
8,809 | 4,636
14,102 | 6,847
8,070 | 3,737
9,688 | 3,980
12,807 | 4,664
10,525 | 6,873
12745 | 3,740
15,035 | 4,037
19,144 | 4,718
26,901 | 6,861
TABLE VI]

JISTIMATED EXPECTED ‘I'()'J'Al/ NUMBER 01”7 OBSERVATIONS AND EXPRECTED LOSS OFF AN INCORRECT

1
1?2

D3

| 14

SELLECTION FOR THE SCHED ULING 1) ATA.

k
3
2

Paramecters

n

1511
Samples
78
30
330
735

L.oss

(1

1.8

3
17

1.2
Samples
19
30
177
283

unbounded, but we have not. as yet obtaitied an upper bound on the relative efliciency of’

112,

1.3 Scheduling Test

We ran the two exp ccted-loss based techniques over the four scheduling data sets. 1In

cach case the L= 3 and nyg -

result 1S that the algoritlnns correctly bounded the expiected loss w ith one exceplion

15. The results are shown below inTable V]]. Thie main

1512 pave greater thanexpected 1oss 011 dataset D3, Itappoars that this exception arose

{rom a significant. depa rture from normality in the distributions comprising the data set.

Additional trials demonstrated this diserepancy goes away if the initial sample size is

increased, thereby nmproving the normal approximation.
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I Discussion of Iapected Loss Foaluation

The three evaluations of ELT and El.2 give clear support for the eflfectiveness of 1 ese
algorithms. The techmiques performed as predicted, properly bounding the expected 10ss
under a variety of parameter configurations. We did observe that under some of the con -
fipurations 151.2 gave slightly larger thanrequested loss. More generally, it appears that
the exprected loss approach will be more susceptible to departures from normality in the
utility distributions, when compared with int erval-based app roach. 13othapproachesuse
a normal distribution to approximate the distribution of a sanple mean.  1loweverthe
interval-hased app roach is only sensitive to the arca under parts of the normal curve. The
expected loss computation makes use of | oth the arca and the shape of certain parts of
the normal curve. Thus the expected 10ss app roach demarids more fidelity frormn its ap-
proximation, and this fidelity is degraded when the underlying distribution is not norial,

I 'his effect can 1)(: compensated by using a larger 1 for the expected 1oss technique.

G.Comparing Interval- bascd o Iepected Loss

One canmot state that interval-Hase techmiques are better or worse than expected 10ss
approachies  cach is solving a slightly different problein.  Interval-1ased approaches are
attempting to identify a nearly optimal hypothesis with high confidence while exyected
10ss app roaches arc attempting Lo minimize the cost of amistaken selection. If the goal of’
the task is to identify the 1)est hypothesis then clGarly an interval-hased approach should
be used. If the goa is 1o simply iimprove expected utility as much as possible, either could
e used and it is unclear which is 1o be preferred.

Our original motivation in developing these ayproaches was to develop ¢ flective tech-
niques for adaptive problem solving. In this section I we attemyt to assess how the various
apprroaches per form o) this task. In particular we consider how the approaches perform
inthe problem of learning a set of Problem solving heuristics for the NASA scheduling, do-
main. hithis test the algorithins were given the task of optimizing four control parameters
Of’ the adaptive scheduler, with the g0al Of speedin g up the schedule generation process.
T'he solution to this consists of identifying a good heuristic for cach of the four control

parameters, where the best choice for a particular parameter deprends on the heuristics
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TABLE V11

DIRECT COMPARISON OF ALL 1'()(11{ ALGORITIIMS.

Algorithinn | Cost (100s CPU see) | Yxamples | Utility
COMPOSER (0.90) G128 2075 | 173
STOTL (0.75,1.0) 1199 2785 171
ST'0Y?2 (0.75,1.0) 3140 1924 16.6
1:1.1 (1.0) 2347 1557 16.8

11,2 (0.5) 2211 1454 | 16.4

chosen for the other cor ityol Parameters. We implenent a hillclimbing strategy for finding
a good combination of” heuristics. IFor more details on this application domain sce [23].
We run cach algorithin under a variety of paramncter settings and compare the best
performance of cach algorithim (i.c.; the lowest cost setting that resulted in a high expected
utility on average). In this test the interval-based algorithins are run with confidence levels
v*= 0.75,0.90,0.95 and indiflerence levels ¢: 1.0, 4.0, 7.0. The expected loss algorithins are
run with loss bound 1.=-5; 1, 0.5. For cach setting 1000 runs are conducted, we then
determined the best settings as the lowest cost solution within 1.0 utility of the average
best solution found per algorithm (eflectively enforcing a minimum wtility of 16.5). These
hest settings and the averaged results (from 1000 runs cach) are shown in Table VIIT. These
results show that the algorithms produce roughly comparable utilitics, the diflerence in
utilities is smaller than the smallest indiflerence interval specified to the interval-based
algorithms.  IFrom this comparison we must conclude that, at least in the case of this
NASA scheduling application, there is little difference between the interval-based and
expected loss approaches, neither in terms of expected improvement nor in terms of sample
complexity. As expected, the unequal allocation approaches performed better in terms
of learning cost. IFinally, all of the improved algorithis outperformed the benchmark

COMPOSER algorithm in terms of learning, cost.

V1. DI1SCcuUssiON AND CCONCLUSIONS

‘1 ‘here are many issuesrelevant to hypothesis evaluation W] rich have not. 1heen addressed
in this paper. One issue 1S modeling the computational cost of inferring and applying

the statistical models. In some applications, one might imagine that these costs would
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play a significant role in determining the usefulness of our hypothesis evaluation mode.
1 Towever, in our target application of learning for scheduling, the cost of gathering further
information heavily outweighs the cost of inferring and applying the statistical models.
However, for otlier domains we concede that this may not. by 1 the case. A sccond related
issuc is 1o estimate and tradeofl this cost of applying the statistics and decision theory

relative to the cost of additional examples.

Another issue is 1o better understand the qualitative conditions under which the cost
sensitive measures (ST01P2 and I51.2) will outperform the equal error distribution models
(STOPT and 151.1). Generally speaking, if the means and variances vary significantly, the
cost sensitive measures should perform better. Additionally, if the marginal computations
are reasonable projections, the cost sensitive measures should also outperform the other

nicasures.

Animportant issue is theuse of the O(k) error function. Irurther einpirical evaluation
LG (s Lo be performed to better understand the relationship hetween 1y and the mu nber
of Hiign switches during hypothesis evaluation | and exactly how this relates to the error
nodels and to the required confidence prarameter 4. AS a further subtlety, onemight
consider removing strat egies which become dominated at any pohit in the evaluation (in
contrast with the current appbroach which requires all strat egies to 1 e co1n pared against

the final i g1).

Another issue is deterining the exact impact of the dual example phenomenon (where
two examples are needed to compute cach data point. for the differential distril »ution)
would }ye desirable. Addit ionally, if” we had a method Of estimating a utility diflerence
with uncqual numbers of examples that would be: very helpful, hut since the utilities arc
covarying it scems unlikely that such a technique will he fourd.

‘This paper has described techmiques for choosing among a set  of alternatives in the
presence of incomplete information and varying costs of acquiring inf ‘ormation. 1110111
ahproach, the cost and utility of various alternatives are represented using parameterized
st at ist ical models. Using techniques fromanareca of statistics called parameter estimation,
models can be inferred from performance on sample problems. These statistical models can

then be used to estimate the utility and cost. of acquiring additional information and the
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utility of selecting specific alternatives from the possible choices at hand. These techniques
have beenrappliedto adaptive DIDDIcl]l-soil’il]g, a technique in which asystein antomati-
cally tunes various control paranicters on a Perforn ance ¢l emenit to iimprove performance
in a given domain. Impirical results were present ed comparing the eflectiveness of these
techniques on artificially generated dataandspeeduy) learning from a real-wor] (I NASA

scheduling domain.
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APPENDIX A: Tup EXriecrebd 1,0ss C AT, CULATION

We begin by noting that we want to integrate over the difference hetween the two
utilities, over the region in which the unselected hypothesis strategy has a higher utility.
Consider the expected loss for the selection of hypothesis strategy I; over 11, I order
{o compute this, we need to examine the differential distyibution U, 4, and integrate from
zero Lo infinity. {

‘ 1 oL s(ll,i-s{;j)\/”))
B, 115)] = o ‘/0 c 1di

- U,. n . . . . . . . Sio ..
we thenmake the substitution of z = { 5 f’)\/ which results in the following implied substitutions: = =777 o

Vi
- S, . . . - 7
Ui j,dz= 1.\/“ dlan ddl = =77 dz and to cornpul e the limits of integration we note thiat whien ! = () ‘Ulg/\t/
Si,., NZ Sy

(- Uil Vo
s

and when / = oo then z = - o0 1'(‘,S11]1,i]lg m:

L |

o o
S 0mz? 20 g

1 -
E(L{;, )= - _ 4 U, S, adz
(g ])) S j\/?ﬂ / Ul‘,]'\/ﬂ ‘ ¢ Vi : J) i

Sioj
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si.; [T 2 v, " 2
B ,I,J( N o 0.5z 2dz) 4 - L] ( _ o 0.52 '(Iz)
Vonn | Ui g Vo Uy v/

s s

0.527

we now note that the first integral has an analytic solution, that fe 0% ade = leaving
us with the following:

(,Z“J‘)? -

Sio e Sin Ui [T .2
)= = 4 - / " ¢ 0,
[ ] \/27171 \/27( Jo ’

(expected loss formulal)

AprreNmx 13: TH 1 TURNBULL AND WEISS ALGORITHM

Turnbull and Weiss have proposed a sequential interval-hased procedure for selecting the
member of a populationwith largest mean, Members are considered normal variables with
u nknown mcan and unk nown variance. Theplocedurc js a5 foliows.” For cach hypotheses
take aninitial sample of 19 01 servations, then take o1 servations sequentially. Stop sam-
pling {from a hypothesis when: gf, < . Where $%jis the sample variance and n; is the nunber
of examples taken for hypothesis i. The value 22 will be defined momentarily. When sam-
pling has stopped on all hypotheses, select the hypothesis with the highest sample mean.,
‘1110 valuen® is defined as ‘(lj where d is chosento satisfy: [~ (I'(y + d)* f(y)dy = 7" where
F(y)and f(y) arc the cumulative distribution funct ion and probability density function of

*

the standard normal distribution, ¢ is the indifference interval, and 4* is the confidence
level. 1 3echhofler provides extensive tables to det ermine d [1 8], Turnbull and Weiss pro-
vide a proof that their algorithin asymptotically exhibits the requested confidence as the

average variance of the hypotheses divided by t he indiflerence interval €Onwverges to zero.

ArpeNDIX C: Tnre COMPOSIER Sys1iM

The COMPOSER system [20] uses a statistical approach very similar to STOP1. Be-
cause COMPOSER perforins hill climbing, it is always working {from a current strategy Hy
and a candidate sct of alternative strategics 1y, ..., 1. COMPOSER computes the incre-
mental utilities of adopting cach of the alternative strategies over 1y, (i.e. COMPOSER
tracks U,,,. g - - .U“k. wg» COmputing confidence intervals for cach of these distributions).
COMPOSER sclects ng samples from cach distribution, then at cach iteration it sam-

ples equally from cach distribution. If any hypothesis 11; ¢ 1y, ..., 1} is shown to have
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U,,,., v > 0 with confidence ~*, it is sclected (ties are broken by the highest Uui, wo)- At

* 18 removed

any iteration, any hypothesis shown to have U, ,, < 0 with confidence ~
from the candidate set. The process terminates when a candidate strategy is selected or
there are no more candidate hypotheses.

There are two major diflerences between COMPOSER and STOP1. First, because cach
strategy is compared to the default, the presence of an extremely good hypothesis strategy
cannot be used to prunc other hypothesis strategies. This is unfortunate because a good
hypothesis strategy (c.g. better than the current strategy) can be shown to dominate
a poor hypothesis more casily (faster) than the poor hypothesis can be shown to be
dominated by the current strategy. The sccond difference is that STOPT incorporates an
indiflerence interval. In some cases, one or more hypotheses will have approximately the
sanie ulility as the current strategy. Thus it may take many samples to determine which
strategy is better, but the overall gain or loss is insignificant. This is a poor expenditure

of sampling resources.
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